欢迎您访问:瑞昌明盛自动化设备有限公司,我司将竭诚为您服务!
SCXI-1193模块PLC系统卡件现货

主页 > 产品中心 > RELIANCE

SCXI-1193模块PLC系统卡件现货

类目:RELIANCE
型号:SCXI-1193
全国服务热线:15270269218
手机:15270269218
微信:15270269218
QQ:3136378118
Email:3136378118@qq.com

在线咨询
产品详情
瑞昌明盛进出口贸易有限公司
主营DCS控制系统备件,PLC系统备件及机器人系统备件,
优势品牌:Allen Bradley、BentlyNevada、ABB、Emerson Ovation、Honeywell DCS、Rockwell ICS Triplex、FOXBORO、Schneider PLC、GE Fanuc、Motorola、HIMA、TRICONEX、Prosoft等各种进口工业零部件

SCXI-1193模块PLC系统卡件现货
SCXI-1193模块PLC系统卡件现货 SCXI-1193模块PLC系统卡件现货 SCXI-1193模块PLC系统卡件现货 SCXI-1193模块PLC系统卡件现货 SCXI-1193模块PLC系统卡件现货 SCXI-1193模块PLC系统卡件现货 人机界面
结束语:
本系统在去年8月一次投运成功,至今运行稳定,通过了用户验收,得到了好评。该系统通过Profibus现场总线技术将现场设备的控制与生产管理紧密结合,实现了控制、管理和监视的机电一体化,提高了生产线综合自动化水平,可以广泛地应用于汽车、摩托车行业的成车总装和发动机总装等生产环节。循环硫化床作为一种清洁高效燃烧技术在国内被广泛认可,循环流化床的燃烧是介于层燃和室燃之间的一种燃烧技术,是采用流态化的燃烧,其具有燃烧适应性广、燃烧效率高、燃烧强度大,温度分布均匀、由于采用低温分级燃烧,高效脱硫、氮氧化合物排量低、负荷调节范围大、污染物排放低、灰渣综合利用性能好等特点,属于环保型锅炉,是国家大力推广的新型锅炉。其燃烧工艺如下:燃料由炉前给煤系统送入炉膛。送风系统由一次风(鼓风)和二次风组成,一次风由炉床下部送入炉膛,主要保证料层流化:二次风沿燃烧室分级多点送入,主要增加炉膛的含氧量起到助燃作用。燃烧后的物料变成一些较小的颗粒随烟气一起进入分离器,经过固气分离其中大部分颗粒由分离器下部的返料器重新送入炉膛,使炉膛内有足够高的灰度,保证流化;烟气经过除尘器由引风机抽出。锅炉控制系统主要有汽包水位自动控制、主汽压力自动控制、炉膛压力自动控制、给煤自动控制,锅炉联锁控制等。其中汽包水位和主汽压力、炉膛压力主要是控制风机和水泵,而传统的控制方式是采用档板或阀门来调节风量和流量,虽然方法简单,但实际上是通过人为增加阻力的办法达到调节的目的,这种节流调节方法浪费大量电能。而采用变频调速的特点是效率高,没有因调速带来的附加转差损耗,调速的范围大,精度高、无级调速。容易实现协调控制和闭环控制,由于可以利用原鼠笼式电动机,所以特别适合于对旧设备的技术改造,它既保持了原电动机结构简单、可靠耐用、维护方便的优点,又能达到节电的显著效果,是锅炉风机水泵节能的较理想的方法。
二、系统介绍
控制系统采用
PLC
、触摸屏、 AI调节器、 变频器等先进的控制设备,对蒸汽锅炉施行有效的联动控制,系统具有联锁/手动切换功能,PLC 对锅炉进行可靠的联锁控制、 报警提示,确保锅炉的安全运行,由于采用变频器对
电机
进行起停控制,将节约大量电能,实现锅炉的经济燃烧。下面以10吨流化床控制系统为例:
1.系统控制总体框图如下:
图片加载中…
2.主要监视参数:
汽包水位:汽包水位是锅炉控制系统中重要的参数之一。 采用单室平衡容器加差压变送器的方法,可得到与汽包水位成正比的4—20mA的电流信号,测量仪表将该电流信号转换为水位信号,直接在仪表上显示汽包水位的高低。 该水位信号同时作为自动调节的汽包水位测量信号,参与系统的自动调节。
主汽压力:用压力变送器将主汽压力转换为4—20mA的电流信号,通过调节仪表将主汽压力显示出来。
炉膛压力:炉膛压力采用微压变送器将炉膛压力转换为4—20mA的电流信号,通过
显示仪表
将炉膛压力显示出来。同时显示仪表对炉膛压力进行判断,当炉膛压力越限时报警、停炉。method that does not rely on the mathematical model to design a fuzzy control system based on Siemens S7-200 PLC, and uses fuzzy logic to summarize the control experience of the operator into a group described qualitatively The condition statement is then quantified by using the fuzzy set theory, so that the controller can accept people's experience and imitate people's operation strategy to intelligently control the gate, that is, it is controlled by the operator within the safe water level range, and the opening degree and opening sequence beyond the safe water level are jointly controlled by the operator and the program. 2. Realization of fuzzy controller 1.1 the fuzzy controller shown in control schematic diagram 1 sets the preset water level (safety water level) of the controlled object as Y0 and the measured value as y (T), where: ET is the deviation of the current time; ET - 1 is the deviation of the previous sampling time. During the operation of the system, the analog current signal (4-20mA) output by the water level transmitter is sent to the AI module of PLC. After analog-to-digital conversion, the signal enters the CPU. The CPU compares the measured water level y (T) with the preset water level Y0 to obtain the water level deviation e, E = y (T) - Y0; Comparing the current time deviation et with the previous time deviation ET-1, the variation EC of water level deviation is obtained, EC = et-et-1;Taking e, EC as the input variables of the two-dimensional fuzzy controller, after fuzzification, it is transformed into a fuzzy set described by fuzzy control language, the fuzzy control rules between input and output are established, and then the fuzzy control table is calculated according to the control rules and stored in the memory of PLC. In the real-time control, the fuzzy control table is searched by the PLC user program to obtain the control quantity u, and combined with EC, the control scheme of the gate is selected in the program. The structure diagram of fuzzy control system is shown in Figure 1

Figure 1

Figure 1

Fig. 1 structure diagram of fuzzy controller system

1.2 realization of fuzzy controller the system adopts two-dimensional fuzzy control. The input and output variable language can be expressed as negative large (NB), negative small (NS), negative zero (NZ), positive zero (PZ), positive small (PS) and positive large (PB). The basic domains of