欢迎您访问:瑞昌明盛自动化设备有限公司,我司将竭诚为您服务!
BENTLY 60M100-00脉冲隔离模块卡件

主页 > 产品中心 > RELIANCE

BENTLY 60M100-00脉冲隔离模块卡件

类目:RELIANCE
型号:BENTLY 60M100-00
全国服务热线:15270269218
手机:15270269218
微信:15270269218
QQ:3136378118
Email:3136378118@qq.com

在线咨询
产品详情
产品广泛应用于冶金、石油天然气、玻璃制造业、铝业、石油化工、煤矿、造纸印刷、纺织印染、机械、电子制造、汽车制造、塑胶机械、电力、水利、水处理/环保、锅炉供暖、能源、输配电等等。
主营DCS控制系统备件,PLC系统备件及机器人系统备件,
优势品牌:Allen Bradley、BentlyNevada、ABB、Emerson Ovation、Honeywell DCS、Rockwell ICS Triplex、FOXBORO、Schneider PLC、GE Fanuc、Motorola、HIMA、TRICONEX、Prosoft等各种进口工业零部件

BENTLY 60M100-00脉冲隔离模块卡件 BENTLY 60M100-00脉冲隔离模块卡件 BENTLY 60M100-00脉冲隔离模块卡件 BENTLY 60M100-00脉冲隔离模块卡件
冶炼节奏提供下列信息支持匹配过程:
1)预计现有大包浇完钢水的时间。
2)上一工位(精炼)钢包出钢时间的显示(由上一工位传入)。
3)根据当前的浇铸钢种、中包重量、温度和大包剩余钢水的重量和上一工位钢包出钢时间计算出建议稳定拉速和建议大拉速以匹配冶炼节奏。该信息周期性刷新并显示在HMI上。
2.2.4物料跟踪
过程计算机系统将对各包钢水从到达回转台开始跟踪,直至切割成定尺铸坯,计算机将记录各包钢水在连铸过程中不同位置时状态的历史信息。物料跟踪主要包括炉次跟踪、铸流跟踪、出坯区板坯跟踪。
2.2.4.1炉次跟踪
炉次跟踪主要包括每一包钢水信息(浇次、炉次、成份、钢种等);钢水从到达回转台到离开回转台的信息采集(到达、离开的时间、重量、温度等);每炉钢水所生成的板坯信息(板坯数目、规格等)。这些数据都保存到数据库中,将用于操作员查询、分析和报表生成。
2.2.4.2铸流跟踪
铸流跟踪从中包、结晶器、铸流本体到板坯切割整个过程中的生产信息:自动统计介质浇次使用量(如水、气、煤气等)并存入数据库,自动进行炉次接缝跟踪和异常事件响应,系统将整个区域的铸坯分成许多逻辑‘分段’,将每个事件与每个分段的具体位置联系在一起,跟踪每个分段的过程信息和事件,将收集到的每分段铸坯的历史信息,作为铸坯质量判定的依据。
2.2.4.3板坯跟踪
跟踪输出区(从切割机到板坯离开输出辊道时)的板坯位置,收集每块板坯经过的处理信息(包括喷号、去毛刺、称重等);同时也收集上线板坯的信息(将由此送往下一工序的板坯)
2.2.5生产信息查询、管理。
对于实时采集的主要的现场数据在
人机界面
上实时显示(当前炉次、钢种、规格、冷却水量等),对于保存的生产信息(浇次信息、炉次信息、板坯信息等)可以进行查询,添加、修改、删除操作。将重要的数据和操作信息保存到数据库形成历史数据和日志文件,并可以生成历史曲线或导出到分析软件中进行分析,给工艺人员提供查找故障,分析工艺的依据和手段。
2.3.主要设备信息管理
将大包、中包、结晶器、扇形段的使用维护信息(寿命、每次维修的具体信息、厂家、材料等)存入数据库并可对其信息进行查询、编辑和维护。。
2.4工艺控制数学模型
2.4.1二次冷却水控制数学模型
过程计算机根据不同的钢种,断面尺寸和其他工艺参数,根据热传导理论和经验公式推导出二次冷却水数学控制模型。过程计算机根据采集到的实际拉坯速度计算出各二次冷却区冷却水流量,但这样计算出的冷却水量与拉速的函数关系是离散的,这必然给水量控制带来大量复杂的计算工作;由于水量控制的不连续性,必然影响铸坯的表面质量,所以采用小二乘法进行拟合的方法,使冷却水量与拉速之间形成二次方程函数关系。二次方程式可表示为:
Qi=Ai*Vg↑2+Bi*Vg+Ci
Qi:(l/min)对应二冷某一段的水量设定值
Vg:(m/min)拉坯速度
Ai、Bi、Ci:对应于该段的水量系数
根据采集到的实际拉坯速度和二次方程式计算出的水量,还要根据采集到的实际中间包温度、二冷水温度等因素进行动态补偿和修正再下载到基础自动化。
2.4.2佳切割计算模型
佳切割优化模型包括佳尾坯切割和换中包连浇时佳长度切割,佳切割优化模型的目的是为大可能的减少钢坯量的损失,使废坯达到少。Smelting rhythm provides the following information to support the matching process:
1) It is estimated that the time for the existing ladle to finish pouring molten steel.
2) Display of ladle tapping time of the previous station (refining) (transferred from the previous station).
3) According to the current casting steel type, ladle weight, temperature, the weight of the remaining molten steel in the ladle and the ladle tapping time at the previous station, the recommended stable casting speed and the recommended maximum casting speed are calculated to match the smelting rhythm. This information is refreshed periodically and displayed on the HMI.
2.2.4 Material tracking
The process computer system will track each ladle of molten steel from its arrival at the rotary table until it is cut into a fixed length billet. The computer will record the historical information of the status of each ladle of molten steel at different positions during the continuous casting process. Material tracking mainly includes furnace tracking, casting flow tracking and slab tracking in the billet area.
2.2.4.1 Heat tracking
The furnace tracking mainly includes the information of each ladle of molten steel (casting times, furnace times, components, steel grades, etc.); Information collection of molten steel from arrival to departure from the rotary table (arrival and departure time, weight, temperature, etc.); Slab information generated by each furnace of molten steel (slab number, specification, etc.). These data are saved in the database for operator query, analysis and report generation.
2.2.4.2 Casting flow tracking
Casting stream tracking: production information in the whole process from tundish, mold, casting stream body to slab cutting: automatically count the usage of medium casting times (such as water, gas, gas, etc.) and store it in the database, automatically track furnace seams and respond to abnormal events. The system divides the whole area into many logical 'segments', linking each event with the specific location of each segment, Track the process information and events of each segment, and use the collected historical information of each segment as the basis for slab quality judgment.
2.2.4.3 Slab tracking
Track the slab position in the output area (from the cutting machine to the time when the slab leaves the output roller table), and collect the processing information of each slab (including spray number, deburring, weighing, etc.); At the same time, it also collects the information of online slabs (slabs to be sent to the next process)
2.2.5 Production information query and management.
For the main on-site data collected in real time
interface
The real-time display (current furnace, steel type, specification, cooling water volume, etc.) on the system enables you to query, add, modify, and delete the saved production information (casting information, furnace information, slab information, etc.). Save important data and operation information to the database to form historical data and log files, and generate historical curves or export them to the analysis software for analysis, so as to provide technologists with the basis and means to find faults and analyze processes.
2.3. Main equipment information management
Store the use and maintenance information (life, specific information of each repair, manufacturer, materials, etc.) of large package, medium package, mold and sector section into the database and query, edit and maintain the information..
2.4 Mathematical model of process control
2.4.1 Mathematical model of secondary cooling water control
The process computer deduces the mathematical control model of secondary cooling water according to different steel grades, section sizes and other process parameters, heat conduction theory and empirical formula. The process computer calculates the cooling water flow in each secondary cooling zone according to the actual drawing speed collected, but the functional relationship between the calculated cooling water flow and the drawing speed is discrete, which will inevitably bring a lot of complex calculation work to the water flow control; Because the discontinuity of water volume control will inevitably affect the surface quality of the slab, the least square fitting method is adopted to form a quadratic equation function relationship between cooling water volume and casting speed. The quadratic equation can be expressed as:
Qi=Ai*Vg↑2+Bi*Vg+Ci
Qi: (l/min) water volume setting value corresponding to a section of secondary cooling
Vg: (m/min) casting speed
Ai, Bi, Ci: water coefficient corresponding to this section
According to the collected actual casting speed and the water volume calculated by the quadratic equation, dynamic compensation and correction shall be made according to the collected actual tundish temperature, secondary cooling water temperature and other factors, and then downloaded to basic automation.
2.4.2 Optimal cutting calculation model
The optimal cutting optimization model includes the optimal tail billet cutting and the optimal length cutting when changing the tundish for continuous casting. The purpose of the optimal cutting optimization model is to reduce the loss of billet as much as possible and minimize the waste billet.